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ABSTRACT 

In this paper, we s tudy  prime ideals and radicals of centred extensions  

of rings. Obtained results are applied to tensor products  of algebras over 

commutat ive  rings. 

0. I n t r o d u c t i o n  

Several authors studied prime ideals and related objects of the tensor product 

A| of F-algebras A and B over a field F (cf. [1, 6, 7, 8]). In particular, 

J. Krempa obtained conditions under which the tensor product A| is prime, 

semiprime and, more generally, S-semisimple for some radical properties S. A 

main tool used in his paper is the Martindale ring of quotients of A and B and 

the corresponding extended centroids. 
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On the other hand, prime ideals and radicals of centred extensions were studied 

in [2, 3, 4, 11, 12]. In the last two of the quoted papers the authors considered 

finitely generated extensions whereas in [2, 3] the general case was studied. 

In this paper we obtain some new results on prime ideals and radicals of centred 

extensions and apply them to tensor products of algebras over commutative rings. 

In Section 1 we study prime ideals and radicals of a centred extension S of 

a prime ring R. It is known that  there is a canonical torsion-free extension S* 

of S which is an extension of Q, the Martindale ring of quotients of R, and the 

centralizer V = Vs. (Q) of Q in S* is a C-algebra, where C is the extended 

centroid of R. There is a one-to-one correspondence between the set of all the R- 

disjoint prime ideals of S and the set of all the prime ideals of V (see [3], Sections 

2 and 5). The main results in Section 1 give a relation between c~(S) and a(V) 

for several radicals a including the prime, locally nilpotent, strongly prime and 

Jacobson radicals. Also, we prove that a prime ideal P of S has some special 

property (e.g. is strongly prime, non-singular, locally nilpotent-semisimple) if R 

and the corresponding prime ideal P0 of V have the same property. 

In Section 2 we apply the results obtained in Section 1 to study A-B-disjoint 

prime ideals of A| where A and B are algebras over a commutative ring F. 

We prove, for instance, that there is a one-to-one correspondence between the 

A-B-disjoint prime ideals of AQFB and the prime ideals of C(A)| where 

C(A) and C(B) are the extended centroids of the prime F-algebras A and B, 

respectively. In particular, this gives a characterization for A| to be prime 

and extends some results of [8, 6]. Also, we find conditions under which an A-B- 

disjoint prime ideal is strongly prime, non-singular, locally nilpotent-semisimple 

and primitive, among others. Finally, we prove that  if A and B are prime a- 

semisimple, then a(A | B) equals the prime radical of A @ B, for several radicals 

a. The corresponding result for the Jacobson radical is also obtained. 

In Section 3 we study prime (not necessarily disjoint) ideals of A| We 

give an equivalent condition for A| to be prime and we show that  a prime 

ideal P of A| is strongly prime (non-singular, locally nilpotent-semisimple) 

if and only if PA = {a ~ A I a | 1 E P} and PB = {b E B I 1 | b E P} 

are strongly prime (non-singular, locally nilpotent-semisimple) ideals of A and 

B, respectively. Also a sufficient condition for P to be primitive is obtained. 

Finally, a sufficient condition for A| to be a-semisimple, for several radicals 

a ,  is given. 
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Throughout this paper every ring has an identity element and if R C_ S is a 

ring extension, then R and S share the same identity. If I is a two-sided ideal 

of a ring R we write I <1 R and we simply say that  I is an ideal of R. Finally, 

module and submodule mean bimodule and sub-bimodule, respectively. 

1. C e n t r e d  e x t e n s i o n s  

We first recall some results from [3] (see also [2]) that  we will need in this paper. 

Let R C S be an extension of rings sharing the identity 1. We say that  S 

is a cen tred  e x t e n s i o n  of R if S contains a subset X such that  1 E X,  S is 

generated by X as an R-module and r x  = x r  for a l l r  E R, x E X.  In what 

follows we denote S by R[X] .  

Let R be a prime ring, Q the Martindale ring of right quotients of R and C the 

extended centroid of R, i.e., the center of Q. Denote by (S* , j )  the c a n o n i c a l  

tors ion- free  e x t e n s i o n  of S defined in ([3], w and w Recall that  S* is an 

extension of Q generated as a Q-module by the centralizing set X and j :  S --~ S* 

is a ring and an R-bimodule homomorphism. There exists a subset E of X which 

contains 1 and which is a basis of S* over Q. This subset E can be chosen as a 

V *  maximal  R-independent subset of X containing 1. The centralizer V = s (Q) 

of Q in S* is a C-algebra. We have V = ~ e e E  | Ce.  

Given an R-submodule N of S, the c lo su re  IN] of N is defined as the sub- 

module 

[ N ] = { x E S [  there e x i s t s 0 ~ I < l R w i t h x l C _ N } .  

It  is known that  

[ N ] - - { y E S  I there e x i s t s 0 ~ H < l R w i t h H y C _ N } .  

The submodule N is said to be c losed  if [N] = N. 

A submodule M of S is said to be d e n s e  in S if [M] = S. It  is known that  if 

E is a maximal  R-independent subset of X,  then M = y] .eeERe is a free dense 

submodule of S. 

A one-to-one correspondence between the following sets was established in 

([3], Theorem 2.15): 

(i) The set of all the closed R-submodules of S. 

(ii) The set of all the closed Q-submodules of S*. 

(iii) The set of all the C-subspaces of V. 
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This correspondence associates the closed R-submodule N of S with the closed 

Q-submodule N* of S* and the C-subspace No of V if j - I (N*)  = N and 

N* = QNo. If j is an embedding (e.g. if S is torsion-free as a right R-module 

which, for instance, holds when S is prime), then N = QNo A S. Moreover, 

the correspondence preserves right closed ideals, two-sided closed ideals and R- 

disjoint prime ideals ([3], w Finally, using ([3], Corollary 2.16) is easy to see 

that  it also preserves intersections and inclusions. 

Throughout this section we use the notation and terminology introduced in 

[3]. In particular, a submodule N of S is said to be R-disjoint if N Cl R = 0. 

For an R-disjoint prime ideal P of S we denote by P* the extension of P to 

S* and by Po the contraction P* M V. As we said above, P = j - l ( p . )  and 

P* = QPo. 

Remark  1.1: To study the factor rings S/P,  S*/P* and V/Po we may factor out 

the ideals P,  P* and P0, respectively, and assume that  they are equal to zero. 

Indeed, S / P  is a centred extension of R with the generating set { x + P  I x E X )  

and the canonical torsion-free extension (S/P)* is isomorphic to S*/P* as a ring 

and a Q-bimodule ([3], Lemma 3.4). The map j:  S --* S* induces a homomor- 

phism f :  S /P  --* S*/P*, which is injective since j - l ( p . )  = p. Moreover S*/P* 

is a free Q-module with the basis E ~ = (e+P* ] e E X~}, for a subset X ~ C_ X.  We 

shall show that  V(s*/p.)(Q) ~- V/Po. Obviously V/Po ~- (V + P*)/P* C_ S*/P* 

and for v E V, q E Q, q(v + P*) = (v + P*)q. Hence (V + P*)/P* C_ Vs./p.(Q). 

Now if $ E Vs.~p* (Q), then ~ = ~ qi(ei -F P*), for some qi E Q, ei + P* E E' and 

q$ = tq for all q E Q. Clearly q~ E C and ei + P* E (V + P*)/P*. Consequently 

C ~-~C(e~ +P*) C_ (V+P*)/P*.  Thus V/Po ~- (V+P*) /P*  = Vs*/p*(Q) and 

the remark follows. 

Now we obtain some results on prime ideals and radicals. We start  with the 

prime radical/3. 

PROPOSITION 1.2: I f  R is a prime ring and S = R[X] is a torsion-free centred 

extension of R, then t3(S) = Q~(V) M S. 

Proof'. The ring S is torsion-free, so for every prime ideal P0 of V, QPo n S is 

an R-disjoint prime ideal of S. Hence, since the above described correspondence 

preserves inclusion, f~(S) C_ N{QPo M S [ Po is a prime ideal of V} = Q~(V) M S. 

Applying Zorn's Lemma, we can find an ideal M of V maximal  among ideals 

I c_ 3(V) such that  QIr S c_ ~(S). If M ~ ~3(V), then VIM contains a non-zero 
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nilpotent ideal N/M.  Suppose N n c_ M. Since elements of Q and V commute, 

( Q N )  ~ c_ QN ~ c QM. Hence (QN n S) ~ c_ QM n S c_ 3(S) and therefore 

QN A S c_ ~3(S), a contradiction. I 

Proposition 1.2 immediately implies the following corollary which was proved 

in ([3], w only under some finiteness assumption. 

COROLLARY 1.3: Suppose that R is a prime ring and S = R[X] is a centred 

extension of R with K e r j  C_ 3(S). Then 3(S) = j - I (Q3(V)) ,  where j: S --~ S* 

is the canonical mapping. In particular, in this case 13(S) is the intersection of 

R-disjoint prime ideals of S. 

Proof." Apply Proposition 1.2 to the torsion-free centred extension S /Ker j .  

I 

The following example shows we cannot expect that the prime radical be always 

an intersection of R-disjoint prime ideals. 

Example 1.4: Let S = Z [ X ] / <  2X >, where Z is the ring of integer numbers. 

Then 3(S) = 0 and the intersection of Z-disjoint prime ideals of S is the ideal 

generated by X. In this example S* = V = Q and j - l ( 0 )  = XS,  where Q is the 

field of rational numbers. 

Since V C_ S* and S* is free over Q, the following is clear. 

LEMMA 1.5: Suppose that v E V and q E Q. Then vq = 0 if and only if either 

v = O o r q = O .  

The local ly  n i l p o t e n t  (resp. nil) radical L(A) (resp. Nil(A)) of a ring A is 

the largest locally nilpotent (resp. nil) ideal of A. We say that a prime ideal P 

of a ring A is local ly  n i l p o t e n t  (resp. nil) s emis imp le  (1.n-semisimple,  for 

short) if L(A/P)  = 0 (resp. Nil(A/P) -- 0). 

PROPOSITION 1.6: Assume that R is a prime 1.n.-semisimple ring and S = R[X] 

is a torsion-free centred extension of R. Then L(S) = QL(V) N S. 

Proof Take Yl, . . . ,Yk E L(V) and q l , . . . , q k  E Q. There exists an integer t 

such that  each product of t elements from the set {Yl,. . . ,Yk} is equal to zero. 

Elements from V commute with those from Q. Hence each product of t elements 

from the set {Ylql, . . . ,Ykqk} is equal to zero. This implies that QL(V) is a 

locally nilpotent ideal of S*. Consequently QL(V) M S c_ L(S). 
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We have [L(S)] = QIo cl S for an ideal I0 of V. Take Yl , . . . ,  Yn E Io. Applying 

([3], Lemma 1.1 (ii) and Corollary 2.16) one gets that  there exists 0 ~ H<I R such 

that  y jH  C_ L(S), 1 < j < n. Since L(R) = O, there are h i , . . . ,  h,~ E H such that  

for every integer p the product of some p elements from the set { h i , . . . ,  hm} is 

non-zero. However T = {yjhi I 1 < j < n, 1 < i < m} C_ L(S),  so there exists an 

integer t such that  each product of t elements from T is equal to zero. Suppose 

that  hi1 ...hi~ ~ O, i l , . . . , i t  E { 1 , . . . , m } .  For any j l , . . . , j t  E { 1 , . . . , n } ,  

(yjl . . .  yj~)(hi~ . . .  hi,) = YJl hi, . . .  yy~hi~ = 0. Hence, applying Lemma 1.5, we 

obtain that  yj~ .. .yj~ = 0. This proves that  I0 is locally nilpotent. Consequently 

L(S) C_ QIo N S c_ QL(V) n S and we are done. I 

The following corollary is clear. 

COROLLARY 1.7: Suppose that R is a prime 1.n.-semisimple ring and S = R[X] 

is a centred extension o[ R with K e r j  _C L(S). Then L(S) = j - I ( Q L ( V ) ) .  In 

particular, in this case L( S) is the intersection of R-disjoint 1.n.-semisimple prime 

ideals. 

COROLLARY 1.8: Assume that R is a pr ime ring and S = R[X] is a centred 

extension of R. An R-disjoint prime ideal P of S is 1.n.-semisimple i f  and only i f  

R is 1.n.-semisimple and Po is an 1.n.-semisimple ideal of V. 

Proo~ Applying Remark 1.1 we may assume that  P = Po = 0. 

Suppose that  L(S) = 0. Since elements from X commute with those from 

R, L(R)[X] is a locally nilpotent ideal of S. Hence L(R) = 0 and Proposit ion 

1.6 implies that  L(V)  = 0. The converse implication is a direct consequence of 

Proposition 1.6. I 

Concerning the nil radical we have the following 

PROPOSITION 1.9: Assume that R is a prime nil-semisimple ring and S = R[X] 

is a torsion-free centred extension of R. Then Nil(S) C Q Nil(V) N S. If, in 

addition, X is a commuting set, then Nil(S) = Q Nit(V) M S =/3(S) .  

Proof." We have [Nil(S)] = QNo c? S for an ideal N0 of V. By Corollary 2.16 

of [3], for every x E No there exists 0 r H ~  R with x H  C_ Nil(S). Since 

Nil(R) = 0, there exists h E H such that  h n r 0 for every natural  number n. 

However xh E Nil(S) and x and h commute,  so 0 = (xh) m = xmh ~ for a natural  

number m. Applying Lemma 1.5 we get that  x m = 0. This shows that  No is a 

nil ideal of V. Consequently Nil(S) C Q Nil(V) N S. 
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If X is a commuting set, then the ring V is commutative.  Hence Nil(V) = ~(V) 

and /3(S) C_ Nil(S) _C Q Nil(V) n S = Q3(V)  n S = 3(S),  by Proposition 1.2. 

The proof is complete. | 

The following corollaries are clear. 

COROLLARY 1.10: I f  R is a prime nil-semisimple ring and S = R[X] is a 

centred extension of R, then Nil(S) C_ j - I ( Q  Nil(V)). If, in addition, the set X 

is commuting and K e r j  C_ Nil(S), then Nil(S) = j - I ( Q  Nil(V)). 

COROLLARY 1.11: Let R be a pr ime ring and S = R[X] a centred extension of 

R. Assume that R is nil-semisimple and P is an R-disjoint prime ideal of S such 

that Po is nil-semisimple. Then P is nil-semisimple. The converse holds provided 

X is a commuting set. 

In Section 2 we give an example (Example 2.15) which in particular shows that  

there exists a centred extension S of a prime ring R with Nil(R) ~ 0 and a prime 

nil-semisimple ideal P of S such that  P0 is not nil-semisimple. 

Recall that  a ring A is said to be (right) s t r o n g l y  p r i m e  if every non-zero 

ideal I of A contains a finite set F,  called an i n s u l a t o r  of I ,  such that  rA(F) ---- 

{a E A I Fa --= 0} = 0. An ideal P of A is called (right) s t r o n g l y  p r i m e  if the 

ring A / P  is strongly prime ([9]). 

PROPOSITION 1.12: Suppose that R is a prime ring and S = R[X] is a centred 

extension of R. Then an R-disjoint prime ideal P of S is strongly prime if  and 

only i f  R is strongly prime and Po is a strongly prime ideal of V. 

Proo~ By Remark 1.1 we may assume that  P = P* = Po = 0. 

Suppose that  S is strongly prime. Then R is strongly prime by ([3], Propo- 

sition 6.5). Take 0 r I0<3 V. Then 0 ~ I = Q I o n S < 3  S. Hence there ex- 

ists F = {Yl , . . . , yn}  C_ I such that  rs (F)  = 0. For every 1 < i <_ n there 

are qij E Q, rrtij c / 0 ,  1 < j < tl, such that  Yl = ~ j q i j m i j .  Let v E 

ry ({mi j  [ 1 < i < n, 1 < j < ti}). Obviously Fv = 0. Take 0 r H<3 R 

with vH C_ S. Then F v H  = 0 and so vH = 0. This implies that  v = 0. 

Consequently {mij} is an insulator of Io. This shows that  V is strongly prime. 

Conversely, suppose that  R and V are strongly prime and take 0 r I <3 S. 

I f I n R  r 0, then there exists a f i n i t e s e t  F C_ I s u c h t h a t  rR(F)  = 0. Take 

s E S with Fs = 0. Since S C_ S* and S* is free over Q, we may write s = 

q l e l + - ' - + q , ~ e n ,  where { e l , . . . , e ~ )  are free over Q and q~ c Q, 1 < i < n. Also 
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there exists 0 ~ H <1 R such that  q~H C R, for 1 < i < n. Thus FqiH = 0, so 

q~H = 0 and it follows tha t  qi = 0. Consequently s = 0 and hence r s ( F )  = 0. 

Hence we may assume that  I M R = 0. There exists 0 ~ Io <1 V with [I] = 

QIo M S. Let F be an insulator of I0. By ([3], Lemma 1.1 (ii) and Corollary 2.16) 

there exists 0 r H <3 R with F H  C_ I. Since R is strongly prime, we can find a 

finite set F'  C H such that  rR(F')  = O. 

We shall show that  F F '  = F ' F  C_ I is an insulator of I .  Note that  if s E S and 

F ' F s  = O, then since Fs  C_ S* and rR(F')  = 0, we obtain as above that  Fs  = O. 

Consequently A = r s ( F F ' )  = rs(F) .  Moreover A is a left R-submodule and a 

right ideal of S. Let Ao be a subspace of V such that  [A] = QAo M S. For every 

y E A0 there exists 0 ~ J <1 R with yJ  C_ A. Now F y J  = 0 which implies that  

Fy  = O. Thus y E r y (F )  = O. Consequently A0 -- 0 and it follows that  A = 0. 

The proof is complete. I 

Recall that  the s t r o n g l y  p r i m e  r ad i ca l  of a ring A is defined as s(A) = 

N ( I  <1 A I A / I  is a strongly prime ring}. In the next Corollary we shall use 

the characterization of s(A) as the largest ideal of A which does not contain an 

insulator modulo any ideal of A ([5], Lemma 1.1). 

COROLLARY 1.13: I f  R is a strongly prime ring and S = R[X] is a torsion-free 

centred extension of R, then s(S) = Qs(V) M S. 

Proo~ From Proposition 1.12 it follows that  s(S) c_ Qs(V) M S. If s(S) 

Qs(V)  M S, then there exist an ideal I of S and a finite subset F of Qs(V)  N S 

such that  Fs  C_ I,  s E S, imply s E I .  Assume that  F = {Yl, . . . ,Y~}, where 

Yi = ~ qijvij for some qij E Q, vii E s(V).  Let [I] -- QIo N S for an ideal I0 of V. 

In view of the quoted result of [5], to get a contradiction, it suffices to show that  

(vii [ all i , j }  is an insulator of s(V) modulo I0. Take v E V such that  vijv E Io 

for all i , j .  By ([3], Lemma 1.1 (ii) and Corollary 2.16) there exists 0 r H <3 R 

such that  vi jvH C_ I for all i , j  and vH C_ S. There also exists 0 r H' <3 R such 

that  for all i , j ,  qijH' C_ S. Since R is a prime ring, T = H ' H  is a non-zero 

ideal of R. Moreover, for all i , j ,  qi jvi jvT = qijvijvH~H -- q~jH'v~jvH c_ S I  C_ I 

which implies that  F v T  C_ I.  Hence, since vT  C_ S and F is an insulator of S 

modulo I ,  we get vT  C I. Consequently v E [I]* N V = QIo M V = Io and the 

proof is complete. I 

COROLLARY 1.14: Suppose that R is a strongly prime ring and S = R[X] 

is a centred extension of R with K e r j  C_ s(S).  Then s(S) = j - l ( Q s ( Y ) ) .  In 
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particular, in this case s( S) is the intersection of R-disjoint strongly prime ideals 

of  S. 

Now we consider non-singular prime ideals. Recall tha t  the (right) s i n g u l a r  

i dea l  of a ring A is defined by Z(A)  = {a �9 A I rA(a) is an essential right ideal 

of A}. The ring A (resp. an ideal I of A) is said to be (right) n o n - s i n g u l a r  if 

Z(A) -- 0 (resp. Z ( A / I )  = 0). 

PROPOSITION 1.15: Suppose that R is a non-singular pr ime ring and S = R[X] 

is a centred extension of R. I f  P is an R-disjoint pr ime ideal of  S such that Po 

is a non-singular ideal of V,  then P is a non-singular ideal of  S. 

Proo~ Applying Remark  1.1 we may  assume P = P0 = 0, so tha t  V is a 

non-singular ring. 

Suppose tha t  Z(S)  r O. By ([3], Corollary 1.8 (iii) there exists 0 r s �9 

Z(S)  M M,  where M = ~ e e E R e  is a free dense R-submodule  of S. We may  

assume tha t  s = ale1 + " "  + a,en is of minimal  support .  Then  by ([3], L e m m a  

2.1) s = aim,  for some 0 ~ m �9 V. Since Z ( V )  = O, there exists a non-zero 

right ideal I0 of V such tha t  r v (m)  A I0 = 0. Let I = QIo N S and I '  = rr(m) = 

{z �9 I I mz  = 0}. Observe tha t  I ~ is a closed left R-submodule  and right ideal of 

S. Thus  I ~ = QI~ n S, where I~ is a right ideal of V contained in I0. For every 

y �9 I~ there exists 0 ~ H , 3  R with yH C I ~. Then  m y H  = 0 and so my = O. 

Since r y ( m)  M Io = O, it follows tha t  y = 0. Consequently r l (m)  = O. 

Now, al  ~ Z(R) ,  so there exists a non-zero right ideal H of R such tha t  

rR(a l )  N H = 0. The ring S is prime and 0 ~ I ,3 S, so H I  is a non-zero right 

ideal of S. Hence, since s �9 Z(S) ,  there e x i s t s0  r z �9 H I  with sz = 0. Let 

z = ~ h t x t ,  where ht �9 H and x~ �9 X.  Then  mz = m ~ h t x t  = ~-~h~mxt. 

Since E is a Q-basis of S*, for each t, mxt  = ~-~lqtlel, where qtl �9 Q and et �9 E.  

There  exists 0 ~ A <1 R such tha t  qtlA C R for all t, 1. Clearly m z A  C ~ e e E H e .  

Moreover a l m z A  = szA = O. Hence, since the set E is R- independent  and 

rR(al) N H -- 0 we obta in  m z A  = 0. However zA C_ H I A  c_ I and r l (m)  = 0, so 

zA = O. Therefore z = 0, a contradiction.  I 

Remark 1.16: We do not know whether  the converse of the above proposi t ion 

holds. If  P is a non-singular R-disjoint prime ideal of S, then R is non-singular 

([3], Proposi t ion  6.6). However we do not  know whether  Po has to be necessarily 

non-singular in this case. 
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Notice that the class of prime rings A with Z(A) = 0 is a special class of rings. 

Hence z(A) = N { P  ] P is a prime ideal of A such that  Z ( A / P )  = 0} defines a 

radical of A. We have 

LEMMA 1.17: I rA  is a strongly prime ring, then Z(A) = O. 

Proof'. If Z(A) r 0, then there exists a finite set F C_ Z(A) such that  rA(F) = 

0. However rA(F) = N{rA(a) I a 6 F} is an essential right ideal of A, a 

contradiction. I 

Lemma 1.17 immediately gives 

COROLLARY 1.18: For every ring A, z(A) C_ s(A). 

Applying Proposition 1.15 we obtain 

COROLLARY 1.19: Suppose that R is a prime non-singular ring and S = R[X] 

is a centred extension of R. Then z(S) C_ j - l ( Q z ( V ) ) .  In particular, if S is 

torsion-free, then z(S) C_ Qz(V) M S. 

Recall that  for a ring A with an identity the B r o w n - M c C o y  rad ica l  G(A) 

of A is defined as the intersection of all maximal ideals of A. 

Let R be a simple ring and S = R[X] a torsion-free centred extension of R. 

Obviously each prime ideal of S is R-disjoint. The correspondence between the 

R-disjoint prime ideals of S and prime ideals of V immediately implies that  P is 

a maximal ideal of S if and only if P0 is a maximal ideal of V. This gives 

COROLLARY 1.20: If  S = R[X] is a centred extension of a simple ring R, then 

G(S) --- j-I(QG(V)). In particular, ifS is torsion-free, then G(S) = QG(V) 63 S. 

A centred extension S of a ring R is called f ree  if we can find a set of central- 

izing generators X which is R-independent [2]. 

If S = R[X] is a free centred extension of a primitive ring R and P is an 

R-disjoint prime ideal of S, then P is a primitive ideal of S provided P0 is a 

primitive ideal of V ([4], Corollary 4). This result is also true for not necessarily 

free centred extensions. 

PROPOSITION 1.21: Assume that R is a (right) primitive ring and S = R[X] is 

a centred extension of R. If  P is an R-disjoint prime ideal of S such that  Po is a 

primitive ideal of V, then P is a primitive ideal of S. 
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Proof" Let T be the polynomial ring over R in non-commuting indeterminates 

{Y~ I x E X} and let ] :  T --~ S be the R-epimorphism defined by f(Yx) = x. Cer- 

tainly T is a free centred extension of R and f - l ( p )  is an R-disjoint prime ideal of 

T. Moreover S /P  ~- T / f - I ( P )  and so (S/P)* ~- ( T / f - I ( P ) )  * ~- T* / ( f - I (P ) )  *. 

Therefore V(TM-I(p)).(Q) ~-- V(s/p)*(Q) "~ V/Po. Since Po is a primitive ideal 

of V, V(T/ I - I (p ) ) . (Q  ) is a primitive ring. By Remark 1.1, V(T/y-~(p)) . (Q ) "~ 
VT. (Q)/( f - l (P))o,  so ( f - l (p ) )o  is a primitive ideal of VT-(Q). Since T is a free 

centred extension of R, Corollary 4 of [4] implies that  f - 1  (p)  is a primitive ideal 

of T. Consequently P is a primitive ideal of S. | 

From Proposition 1.21 we immediately get 

COROLLARY 1.22: Assume that  R is a primitive ring and S = R[X] is a centred 

extension of R. Then J ( S ) C_ j -  I ( Q J ( V ) ), where J denotes the Jacobson radical. 

In particular, if S is torsion-free, then J(S) C_ QJ(V) N S. 

The main result in [4] shows that  if R is a Jacobson semisimple ring and 

S = R[X] is a free centred extension of R such that  C[X] is Jacobson semisimple 

for every field C which is the extended centroid of a primitive factor of R, then 

S is also Jacobson semisimple. Using the results of this section one can easily 

see that  the same holds for several other radicals. To get this it suffices to note 

that  if R[X] is a free centred extension of R, then for each ideal I of R, I[X] is 

an ideal of R[X] and R[X]/I[X] ~- (R/I)[X] in a natural  way, and (R/I)[X] is 

a free centred extension of R/I .  

COROLLARY 1.23: Let S = R[X] be a free centred extension of a ring R. I f  

a(R) = 0 and a(C[X]) = 0 for every tield C which is the extended centroid of a 

prime factor of R, then a(S) = 0, where a = s, z, 3, L, Nil, J, G. 

2. T e n s o r  p r o d u c t s :  d i s jo in t  case  

Throughout this section we assume that  A and B are algebras over a commutat ive 

ring D. For an ideal I of AQDB we put 

and 

IA= { a e  A [ a |  e I }  

I B =  {bE BI  I |  I }. 

The ideal I is said to be A-B-disjoint if IA = IB ---- O. 
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Note that  if P is a prime ideal of AQDB, then PA and PB are prime ideals 

of A and B, respectively. In this section we study A-B-disjoint prime ideMs of 

AODB. 

Assume that  P is an A-B-disjoint prime ideal of A| Then A and B are 

prime rings and the canonical mappings a --* a | 1 and b --~ 1 | b are embeddings 

o f A a n d  B i n t o A |  respectively. Note that  ID = {dE  D ] d | l = 0} = 

{d E D I 1 | d = 0} is a prime ideal of D and there exists a canonical ring 

isomorphism A| ~- A| Moreover D/ID is a commutat ive domain 

isomorphic to a subring of the center of A and a subring of the center of B. Thus 

studying A-B-disjoint prime ideals of A| we can assume without loss of 

generality that  A and B are prime D-algebras and D is a commutat ive domain 

contained in the center of A and in the center of B. If there is no danger of 

misunderstanding, instead of AQDB we write A @ B or denote it by S. Now we 

establish some elementary properties of S. 

LEMMA 2.1 : Suppose A and B are prime D-algebras where D is a commutative 

domain contained in the centers of A and B. I f  0 ~ a E A and 0 ~ b E B, then 

a |  

Proo~ From the universal property of tensor products it follows that  A | F _~ 

D-1A, where F is the field of fractions of D and D-1A denotes the localization 

of A at D - {0}. Similarly, F | B ~- D - l B .  In particular we have a | 1 ~ 0 in 

A |  l | 1 7 4  However F is a field, so (a | l)  | (l | b) # 0 in 

(A | F) |  | B) ~_ A | B | F. This implies that  a | b | 1 ~ 0 in A | B | F 

and consequently a | b ~ 0 in A | B. | 

LEMMA 2.2: Suppose A and B are prime D-algebras where D is a commutative 

domain contained in the centers of A and B. I f  P is an ideal ors  which is maximal 

among the ideals o r s  not containing non-zero elements of the type a | b, a C A, 

b E B, then P is an A-B-disjoint prime ideal of S. 

Proof: Suppose that  I and J are ideals of S strictly containing P.  By maximali ty  

of P,  there are 0 # a| C I and 0 # c| E J. Since A and B are prime, axc ~ 0 

and byd # 0 for some x E A, y E B. Now by Lemma 2.1, 0 # axc| byd E IJ .  

H e n c e l J ~ : P a n d P i s p r i m e .  I f a Q 1 E P ,  a E A ,  w e h a v e t h a t  a |  

so using Lemma 2.1 we obtain a = 0. Thus PA = 0. Similarly PB = 0 and the 

proof is complete. | 
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The above shows that  there exists an A-B-disjoint prime ideal of S if and only 

if A and B are prime D-algebras and D is a commutat ive domain contained in 

the centers of A and B. Moreover, in this case we may identify A with A | 1 

and B with 1 | B and assume that  A and B are contained in S. We keep these 

assumptions throughout the rest of this section. 

LEMMA 2.3: I f  P is an A-B-disjoint prime ideal of  S and a | b E P for some 

a E A, b E B,  then either a = O or b =  O. 

Proof." Note that  ( a |  = B ( a Q 1 ) ( 1 Q b ) A  = B ( a Q b ) A .  Hence, 

i f a Q b  E P,  then either a |  C P or l |  C P,  i.e., either a E PA = 0 or 

b e  P B = O .  I 

The proof of the following lemma is straightforward. 

LEMMA 2.4: Let F be the field of fractions of D. I f  E is a maxima/  D- 

independent subset o r B ,  then {1 | e}eEE is an F-basis o f f  @ B. 

Let Q = Q(A)  be the Martindale ring of right quotients of A and C = C(A)  

the extended centroid of A, i.e., the center of Q. Since C is a field and D C_ C, 

the field of fractions F of D is contained in C. The canonical isomorphism 

C Q B  ~ C Q F F |  and Lemma 2.4 imply that  {1 | e}eEE is a C-basis of C Q B ,  

where E is a maximal  D-independent subset of B. Hence Q | B "~ Q | 1 7 4  

is also a free Q-module with the basis {1 @ e}eeE. This also shows that  the 

canonical map of C | B into Q | B is an embedding. We can obviously assume 

that  1 E E and hence that  Q c_ Q | B in a canonical way. Hereafter we denote 

by E the above constructed Q-basis {1 | e}~eE of Q | B. 

Now we are ready to apply the results on centred extensions to study A-B-  

disjoint prime ideals of S. 

Note that  S is a centred extension A[X] of A, where A is identified with A @ 1 

and X = {1 | b I b E B}. In what follows we put 

T = [0] = {x e S I x H  = 0 for some 0 ~ g <3 A} 

and call T the A - t o r s i o n  idea l  of S. Clearly every A-disjoint prime ideal of S 

contains T. 

The canonical map  of A | B into Q | B will be denoted by h. Let us point 

out that  since Q @ B is free as a Q-module, Q | B is A-torsion-free in the sense 

of ([3], Section 2). 
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Let (S* , j )  be the canonical torsion-free extension of S. We have 

THEOREM 2.5: Under the above notation there exists an isomorphism of Q- 

extensions r (S*, j)  ~ (Q | B, h). Moreover, Ker h = T and r = C | B, 

where Y = Vs* (Q). 

Proo~ By the universal property of (S*, j )  there exists an A-homomorphism of 

rings r S* --* Q| such that  r  = h. The universal property of tensor products 

easily implies that  there exists a Q-homomorphism of rings r Q | B --* S* such 

that  r  | b) = j(1 | b)q, for all q E Q and b E B. Obviously, since j is an A- 

homomorphism, Cob  = j .  Consequently r 1 6 2  -- h and r 1 6 2  = j .  Now using 

the universal properties defining tensor products and (S*, j )  we get r 1 6 2  = idQ| 

and r o r = ids*. Consequently r is an isomorphism of Q-extensions. 

By ([3], Remark 2.9), K e r j  = T and so Kerh  = T. Finally Y = Vs*(Q) ~- 

VQ| However, since C @ B and Q | B are C and Q-free, respectively, with 

the same basis E,  we have VQ| = C | B and we are done. | 

Now as a consequence of ([3], Theorem 2.15) we obtain that  there exists a one- 

to-one correspondence between the closed A-submodules of A | B, the closed 

Q-submodules of Q | B and the C-subspaces of C | B. In particular, we have 

(see also [3], Theorem 5.3) 

COROLLARY 2.6: There is a one-to-one correspondence between the following: 

(i) The set of all the A-disjoint prime ideals of A | B. 

(ii) The set of all the Q-disjoint prime ideals of Q | B. 

(iii) The set of all the prime ideals of C | B. 

This correspondence associates a prime ideal P of A | B with a prime ideal 

P* of Q | B and a prime ideal Po of C | B if h- l ( P *) = P and P* = Po(Q|  B). 

Now we obtain some information about  A and B-closed submodules of S. 

LEMMA 2.7: Let N be an A-closed submodule of S. Denoting by N* the 

Q-closed submodule of Q @ B corresponding to N we have 

(i) N is a B-submodule o r s  if and only if N* is a B-submodule of Q @ B. 

(ii) N is B-disjoint if and only if N* is B-disjoint. 

(iii) N is B-closed if and only if N* is B-closed. 

Proo~ (i) Since N = h - l ( N  *) and h is a B-homomorphism, it is clear that  

N is a B-submodule whenever N* is a B-submodule. Assume now that  N is a 

B-submodule and take x = ~l<i<nqi| C N*, where qi E Q, bl E B, 1 < i < n. 
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There exists 0 ~ H , 3  A such that  qiH C_ A for i = 1 , . . . , n .  For a E H put 

xa = ~-'~l<~<nqia| E S. Since h(xa) = xa E N*, we have that  x ,  E N. Now for 

every b E B, x~b E N,  so xba = (~l<~<,qi| = ~-~l<~<nq~a| = h(xab) E 

N*. Hence xbH C N* and by ([3], Corollary 2.16), xb E N*. Consequently N* 

is a B-submodule of Q | B. 

(ii) For every b E B we have 1 | b = h(1 | b). Thus 1 @ b E N in S if and only 

if 1 | b E N* in Q | B. This proves (ii). 

(iii) If  y E S and y F  _C N for some 0 ~ F ` 3  B, then h(y)F  C_ N*. Hence if 

N* is B-closed, then h(y) E N* and y E N follows. Thus N is B-closed. 

Conversely, assume that  N is B-closed and take x = ~-~-l<i<nq~ | bi E Q | B 

a n d a n o n - z e r o i d e a l H  o f A  w i t h q i H  C_ A. As in (i) we t a k e a  E H and put 

xa = )-~l<i<nqia | b~ E S. Suppose there exists 0 ~ F `3 B such that  x F  C_ N* 

and take any b E F. We have h(xab) = ~ i < i < n q ,  a | bib = (~l<_i<~q~ | b~b)a = 

xba E N*. Therefore x~F C_ N and so x~ E N. Consequently xa = h(xa) E N*. 

This shows that  x H  C N* and, since N* is Q-closed, x E N* follows. The proof 

is complete. I 

Let l be the canonical homomorphism of Q(A) | B to Q(A) | Q(B).  As above 

we have Ker l  = {y E Q(A) | B ] yL = 0 for some 0 ~ L `3 B}. Now we shall 

prove 

PROPOSITION 2.8: The smallest A and B-closed submodule K of S is equal to 

Ker(l o h). In particular, K is an ideal of S. 

Proo~ Q(A) | Q(B)  is a free Q(A)-module as well as Q(B)-module.  Thus the 

zero ideal of Q(A) | Q(B) is Q(A) and Q(B)-closed. Applying twice Lemma 2.7 

we obtain that  Ker(l o h) is A and B-closed. Now let I be an A and B-closed 

submodule of S and denote by I* the corresponding Q(A)-closed submodule of 

Q(A) | B.  By Lemma 2.7 (iii), I* is B-closed. Also K e r / i s  the smallest B-closed 

submodule of Q(A) | B.  Therefore Ker /  C_ I* and Ker ( /o  h) = h - l ( K e r / )  c_ 

h - l ( I * ) = I .  I 

Hereafter we denote by K the ideal Ker(l o h) and we call it the t o r s i o n  idea l  

of S. 

Proposition 2.8 gives 

COROLLARY 2.9: I f  P is an A-B-disjoint prime ideal of A | B,  then K C_ P. 
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Let us notice that the canonical mapping of B into Q(A) | B (as well as that 

of B into C(A) | B) is an embedding. Indeed, if b E B and 1 | b = 0 in Q(A) | B, 

then 1 @ b, treated as an element of A | B, belongs to T. Hence there exists 

0 r H <1 A with (1 | b)H = O. Applying Lemma 2.1 we obtain b = 0. 

Now we can repeat earlier arguments to study B-disjoint prime ideals of Q(A)| 

B (resp. C(A)|  passing to Q(A)|  and Q(A)|  (resp. C(A)|  

and C(A) @ C(B)).  Putt ing these together with Corollary 2.6 and Lemma 2.7 

we get the following: 

COROLLARY 2.10: There is a one-to-one correspondence between the following 

(i) The set of all the A-B-disjoint prime ideals of A @ B. 

(ii) The set of all the Q(A)-Q(B)-disjoint prime ideals of Q(A) | Q(B). 

(iii) The set of all the prime ideals of C(A) | C(B). 

The correspondence associates a prime ideal P of A | B with a prime ideal P* 

ofQ(A)  @ Q(B) and a prime ideal Po o fC(A)  @ C(B) i f( l  o h ) - l ( P  *) = P and 

P* = Po(Q(A) @ Q(B)).  

Remark 2.11: If S is torsion-free as an A and B-module (which holds for instance 

when D is a field), then K = 0 and l o h: S --* Q(A) @ Q(B) is an embedding. 

Then the above correspondence is such that P = Po(Q(A) @ Q(B)) n (A | B). 

The representation of A-B-disjoint prime ideals of A | B in this form when D is 

a field was obtained in ([6], Corollary 1.3). However it was not proved there that  

this gives a one-to-one correspondence. 

Corollary 2.10 gives in particular the following: 

COROLLARY 2.12: The following conditions are equivalent 

(i) C(A) | C(B) is a domain 

(ii) The torsion ideal K is a prime ideal of A | B. 

In particular, A @ B is prime if and only if A | B is torsion-free as an A and 

B-module and C(A) | C(B) is a domain. 

The results on centred extensions give several applications to A-B-disjoint 

prime ideals of S. 

COROLLARY 2.13: Let P be an A-B-disjoint prime ideal of A | B. Then P is 

strongly prime (resp. non-singular, 1.n.-semisimple) if and only if A and B are 

strongly prime (resp. non-singular, l.n.-semisimple). 
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Proof: Let P0 be the prime ideal of C(A) | C(B) corresponding to P.  Since 

C(A) | C(B) is commutative, P0 is strongly prime, non-singular as well as 1.n.- 

semisimple. Now the corollary follows from Propositions 1.12 and 1.15, Remark 

1.16 and Corollary 1.8. | 

Similarly, Corollary 1.11 gives 

COROLLARY 2.14: Let P be an A-B-disjoint prime ideal of A | B. I rA  and B 

are nil-semisimple, then P is nil-semisimple. 

The converse of Corollary 2.14 is not true in general. We have 

Example 2.15: Let A be a finitely generated not nilpotent algebra over the field 

of rational numbers Q such that A| is a nil algebra for every field extension 

Q c_ K (cf. [1], Lemma 59). Since A is finitely generated, there exists an ideal 

I of A maximal with respect to the property A n ~ I for every natural number 

n. Clearly B = A / I  is a prime algebra such that  for every 0 ~ J <1 B, B / J  

is nilpotent. Let R be the prime Q-algebra obtained from B by adjoining an 

identity and S = R| By [10] the algebra B| is not nil. Hence there 

exists a prime nil-semisimple ideal P of S such that  B| ~ P. Note that 

P i s  R-R-disjoint. Indeed, i f J  = {r e R I r |  C P} ~ 0, then B n c_ J for 

some n. Thus B n | B C_ P and, since the ideal P is prime, B| C_ P, a 

contradiction. Now the prime ideal Po of C(R)|  corresponding to P satisfies 

C(R) | B ~= Po (otherwise we would have B | B C_ P).  Hence both P0 and R 

are not nil-semisimple. This provides also a counterexample to the converse of 

Corollary 1.11. 

COROLLARY 2.16: Let P be an A-B-disjoint prime ideal of A | B and let Po 

be the corresponding prime ideal of C( A ) | C( B). Then Po is a maximal ideal of 

C ( A ) |  if  and only if P is maximal among the ideals of A @ B not containing 

non-zero elements of the type a @ b, a E A, b E B. 

Proof: By Lemma 2.3 P does not contain non-zero elements of the type a | b, 

a E A, b E B. Assume Po is maximal and take an ideal M of A | B which is 

maximal among the ideals containing P and not containing non-zero elements of 

the type a | b, a E A, b E B. By Lemma 2.2, M is a prime A-B-disjoint ideal 

of A | B. Hence M corresponds to a prime ideal M0 of C(A) @ C(B) such that  

P0 C_ M0. Hence P0 = M0 and so P = M. 
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Conversely, let Mo be a maximal ideal of C(A) | C(B) containing Po and let 

M be the corresponding A-B-disjoint prime ideal of A | B. By Lemma 2.3 and 

the maximality of P we have M = P and consequently M0 = P0. | 

Corollary 2.16 immediately gives the following generalization of Corollary 1.4 

in [6] and the main result of [8]. 

COROLLARY 2.17: The following conditions are equivalent: 

(i) C(A) @ C(B) is a field. 

(ii) The torsion ideal K is maximal among the ideals of A @ B not containing 

non-zero elements of the type a @ b, a E A, b E B. 

We also have 

COROLLARY 2.18: Assume that A and B are primitive algebras and P is an 

A-B-disjoint ideal of S which is maxima/among the ideals of S not containing 

non-zero elements of the type a | b, a E A, b E B. Then P is a primitive ideal os 

S. 

Proo~ By Lemma 2.2 P is prime. Denote by Po the prime ideal of C(A) @ C(B) 

corresponding to P. By Corollary 2.16, the ideal P0 is maximal. Hence by 

Proposition 1.21 the ideal P is primitive. | 

For every commutative ring R, ~(R) = L(R) -- Nil(R) = s(R) = z(R). 

Moreover, it is well known that  if K1, K2 are fields, then G(K1 @ K2) = 

J(K1 | K2) = ~(K1 |  Applying these and results of Section 1 one eas- 

ily gets 

COROLLARY 2.19: Assume that A and B are prime (resp. prime 1.n.-semisimple, 

prime nil-semisimple, strongly prime, prime non-singular, primitive, simple) 

rings. Then 

~(A @ B) = (l o h)-I((Q(A) | Q(B))I3(C(A) | C(B))) 

(resp. a(A | B) = (l o h)-I((Q(A) @ Q(B))~(C(A) | C(B))), for ~ = L, Nil, s, z, 

J,G). 

3. Tensor products: general case 

In this section we show how the results on prime ideals of tensor products of 

algebras over a commutative ring can be obtained, after some reduction, as an 
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application of the results of the former sections. Throughout A and B are algebras 

over a commutat ive ring F and S = A| 

Given an ideal I of S, define the ideals IA and I s  of A and B, respectively, 

as in Section 2. If P is a prime ideal of S, then PA and PB are prime ideals of 

A and B, respectively. Now we ask for conditions under which for given prime 

ideals p i  and P "  of A and B, respectively, there exists a prime ideal P of S such 

that  PA = P~ and PB = P ' .  

Denote by a: F --~ A (resp. t3: F --* B) the canonical mapping f --~ f l A  (resp. 

f --* f l B ) .  We have 

PROPOSITION 3.1: Let P~ and P "  be ideals of  A and B, respectively. Then 

there exists a prime ideal P of S such that PA = P~ and PB = P" if and only if 

P' and P" are prime ideals with a - X ( P  ') = / 3 - 1 ( P " ) .  

Proof: If P is a prime ideal with PA = P' and PB = P", then P~ and P" are 

prime ideals. Moreover f E a - X ( P  ') = a-I (PA)  if and only if f | 1 E P. Since 

f | 1 -- 1 | f ,  this is equivalent to f C j3-1(PB) = ~3-1(P"). 

Conversely, assume that  P' and P "  are prime ideals with a - l ( P  ') = j3-1(P '') 

and denote this ideal by I .  Then I is a prime ideal of F and so D = F / I  is 

a domain such that  the natural  mappings from D to A l P '  and B / P "  are era- 

beddings. By Lemma 2.2 there exists an (A/P')-(B/P")-disjoint  prime ideal 

t5 of (A/P ' ) |  Also there exists a natural  epimorphism r S --* 

(A /P ' ) |  ~- ( A / P ' ) Q D ( B / P ' ) .  Thus P = r  is a prime ideal of 

S with S / P  ~- ( ( A / P ' ) |  Moreover PA = P'. Indeed, a C PA if 

and only if a @ 1 C P,  i.e., ~ | i C/5, where ~ = a + p t  and i = 1 + P ' .  Since 15 

is (A/P')-disjoint, the last condition is equivalent to ~ = 0, i.e., a E pt .  Hence 

PA -~ P'. Similarly one obtains that  PB = P". i 

Now we shall obtain a characterization for A @ B to be prime. 

THEOREM 3.2: The following conditions are equivalent 

(i) S is a pr ime ring. 

(ii) The ideals O m and O B are prime, S is torsion-free as A / O A and B / O B-module 

and C(A/OA)| is a domain. 

Proof: Note that  S "~ (A/OA)| ~- (A/OA)| where D = 

F/a-I(OA).  Now the theorem is a direct consequence of Corollary 2.12. i 
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Remark 3.3: If A and B are prime F-algebras and K e r a  = Ker~, then D = 

F / K e r a  embedds into A and B and A| "" A| In this case 0A = 0B ---= 0 

and the results of Lemmas 2.1 and 2.2 hold. 

Now we assume that P is a prime ideal of S and we show how some 

results on the factor SIP can be obtained by reducing to the disjoint case. 

Denote by I the prime ideal OE-I(PA) = ~ - I ( p B )  of F and put D = F/I .  

Note that (A/PA)| ~-- (A/PA)QD(B/PB) and the canonical mappings 

D --* A/PA and D --~ B/PB are embeddings. 

Let 0: S ~ (A/PA)| be the epimorphism of rings defined by 

r  = (a+PA)Q(b+PB).  It is clear that L = A |  = Ker r  and 

S/L ~- (A/PA)QF(B/PB). Now L C P and consequently r  is a prime ideal 

of (A/PA)| such that S /P  ~_ ((A/PA)|162 We easily see 

that r  is an (d/PA)-(B/PB)-disjoint ideal of (A/PA)| 

The foregoing observations and Corollaries 2.13 and 2.14 immediately give 

THEOREM 3.4: Let P be a prime ideal of S = AQFB. Then P is strongly 

prime (resp. non-singular, 1.n.-semisimple) if and only if PA and PB are strongly 

prime (resp. non-singular, 1.n.-semisimple) ideals of A and B, respectively. 

THEOREM 3.5: If P is a prime ideal of S such that PA and PB are nil-semisimple 

ideals of A and B, respectively, then P is also nil-semisimple. 

As a consequence of Corollary 2.18 we have 

THEOREM 3.6: Assume that P' and P" are primitive ideals of A and B, re- 

spectively, with a - l ( P  ~) = ~ - l ( p , )  and let P be an ideal of S which is maximal 

among ideals I of S with IA = P' and IB = P". Then P is a primitive ideal 

of S. 

Proo~ Using the above reduction we may assume P '  = P"  = 0. Take an ideal 

I of S which is maximal with respect to the following condition: P C_ I and I 

contains no non-zero elements of the type a | b, where a E A and b E B. Then I 

is primitive by Corollary 2.18 and by the maximality of P we have I = P. 1 

Applying Corollary 1.23 one obtains 

COROLLARY 3.7: If A and B are F-algebras such that B is free as an F- 

module, a(A) = 0 and a(C| = 0 for every field C which is the extended 

centroid of a prime factor of A, then a(S) = 0 provided a is any of the radicals 

s, z, 3, L, Nil, J, G. 
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In par t icular  we have (see [7]) 

COROLLARY 3.8: Assume tha t  A and B are algebras over a field F and a is any 

of  the radicals in Corollary 3.7. I r a ( A )  = a (B)  -- 0 and ~3(C(fi~)| = 0 

for all prime factors A and B of A and B, respectively, then a ( A |  = O. 
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